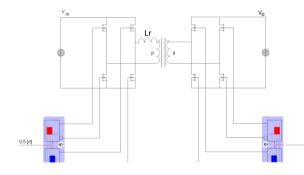
# Educational hardware trainer for teaching the Dual Active Bridge in a DC Grid.

THUAS Delft, The Netherlands S.J.C. Koning(presenter), D.C. Zuidervliet, P.J. van Duijsen(presenter)



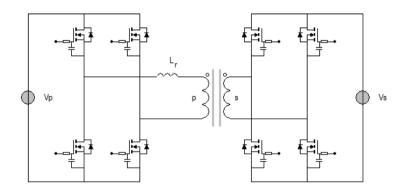
dc-lab.org

June 11-13, 2024




#### Table of contents

- Introduction
- Overview
- Topology
- Modulation
- Simulation
- 6 Hardware Trainer
- Measurements
- Conclusions


Task: Teaching the application of the Dual Active Bridge using a Hardware Trainer

- Dual Active Bridge [DAB]
- Topology and Modulation
- Design and Simulation
- Hardware Trainer





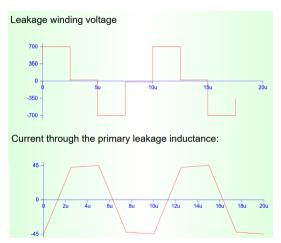




Dual Active Bridge with leakage inductance shown next to the coupled inductors.

dc-lab.org Dual Active Bridge June 11-13 , 2024 4 / 16

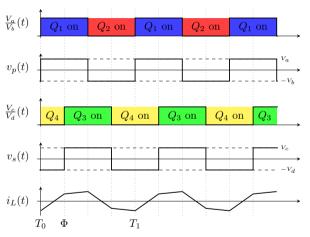



# Online Design Tool



Design tool to calculate the current waveform and power transfer.




## Online Design Tool



Voltage across and current through the leakage inductor  $L_r$ .



## Principle of Operation



Phase-shift modulation, showing the Mosfet state, Bridge voltages and current through the leakage inductor  $L_r$ .

dc-lab.org Dual Active Bridge June 11-13 , 2024 7 / 16

## Principle of Operation

$$P_{Nom} \propto \frac{V_{max}^2}{F_s \cdot L_{Leakage}} \tag{1}$$

(3)

$$i_0 = \frac{T_s}{2L_r} \left( -\frac{V_{in}}{2} + \frac{nV_o}{2} - nV_o \frac{\varphi}{\pi} \right) \tag{2}$$

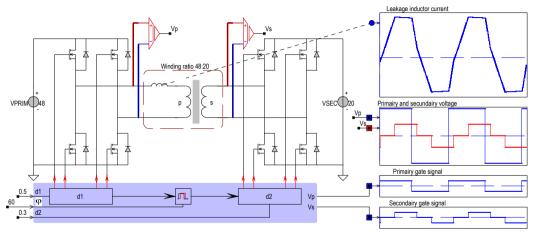
$$i_{\varphi} = \frac{T_s}{2L_r} \left( -\frac{V_{in}}{2} + \frac{nV_o}{2} + V_{in} \frac{\varphi}{\pi} \right)$$

$$i_{\pi} = \frac{T_s}{2L_r} \left( \frac{V_{in}}{2} - \frac{nV_o}{2} + nV_o \frac{\varphi}{\pi} \right) \tag{4}$$

$$P_o = \frac{nV_{in}V_o}{2f_cL_r}\frac{\varphi}{\pi}(1 - \frac{\varphi}{\pi}) \tag{5}$$

dc-lab.org Dual Active Bridge June 11-13 , 2024 8 / 16



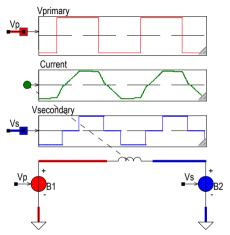

#### Calculated Values

| Pin=7.65[kW]                       |          | Tp2=5[µs] T |         | p3=5[µs] | Tp4=10[µs] |          | Ts1=2.5[µs] Ts |          | 2=2.5[µs] |          |
|------------------------------------|----------|-------------|---------|----------|------------|----------|----------------|----------|-----------|----------|
| Ts3=7.5[μs] Ts4=7.5[μs] Ts5=10[μs] |          |             |         |          |            |          |                |          |           |          |
| t=                                 | 0µs      | 0µs         | 2.5µs   | 2.501µs  | 5µs        | 5.001µs  | 7.5µs          | 7.501µs  | 10µs      | 10µs     |
| V <sub>L</sub> =                   | 340V     | 700V        | 360V    | 20V      | -340V      | -700V    | -360V          | -20V     | 340V      | 340V     |
| IL=                                | -44.991A | -44.983A    | 42.483A | 42.501A  | 45A        | 44.983A  | -42.483A       | -42.501A | -45A      | -44.991A |
| I <sub>in</sub> =                  | 0A       | -44.983A    | 42.483A | 42.501A  | 45A        | -44.983A | 42.483A        | 42.501A  | 45A       | 0A       |

Calculated current maxima and power transfer.



#### Full Simulation Model

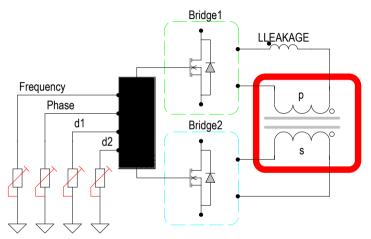



Simulation in Caspoc, of a DAB using two full bridges. The scope show from top to bottom, leakage inductor current, primary and secondary transformer voltages and left and right bridge gate signal.

dc-lab.org Dual Active Bridge June 11-13 , 2024 10/16



## Simplified Simulation Model




Simplified model in Caspoc, containing the two bridge voltages as controlled voltage sources coupled by only the leakage inductor  $L_r$ .

11 / 16

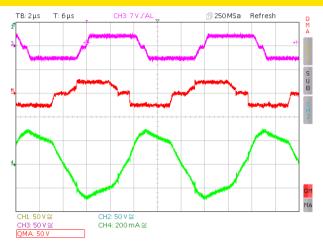


## Principle Diagram



Principle schematic of the low voltage hardware trainer for the DAB, with manual controls for frequency, phase-shift and duty-cycles.



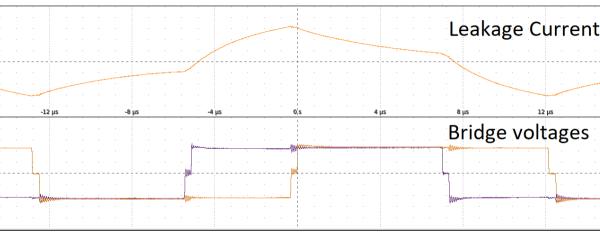

## Experimental Demonstrator



Low voltage hardware trainer, where switching frequency, duty cycles and phase shift can be manually changed by the student during operation of the DAB. Voltages across and current through the transformer can be measured with the coaxial cables.



## **Experimental Demonstrator**




Lower trace, leakage inductor current (lpp=1.0 Ampere), and bridge output voltages(Vpp=48v), of the DAB with phase difference of 45 degrees, operating at 100kHz, Vdc=24v.

dc-lab.org Dual Active Bridge June 11-13 , 2024 14 / 16



# Experimental Demonstrator



Measurement of full power transfer for  $\varphi=75^\circ$ . From top to bottom: Leakage inductor current[Ch5-Orange, 5A/div,  $4\mu s/div$ ] and primary[Math1-Orange] and secondary[Math2-Purple] transformer voltage[50V/div,  $4\mu s/div$ ].

dc-lab.org



#### Conclusion

- Dual Active Bridge functionality
- Modulation
- Design tools and Simulation
- Hardware Trainer

Thank you! https://www.dc-lab.org P.J.vanDuijsen@hhs.nl

