Vermogenselektronica II

Peter van Duijsen

20 mei 2020

Peter van Duijsen

20 mei 2020 1 / 55

Table of contents

- 2 Spanningsmodulatie
- O Pulsbreedte Modulatie
- 4 Drie-fasen PWM
- 5 Zero Point Shift
- 6 Space Vector Modulatie

Modulatie van een inverter?

PWM en space Vector Modulatie.

IGBT Inverter

Inverter

Figuur: Basis inverter schakeling met schakelaars.

Averaged inverter

Figuur: Equivalent circuit voor de mathematische voorstelling van de inverter d.m.v. gestuurde spannings- en stroombronnen.

Circuit symbool

Figuur: Circuit symbool voor de DC-AC inverter.

Opbouw met Mosfets en IGBTs

Figuur: Drie-fasen inverter met Mosfets.

Figuur: Drie-fasen inverter met IGBTs.

Vermogensbereik

- Mosfet (Metal Oxide Field Effect Transistor)
- IGBT (Insulated Gate Bipolar Transistor)
- Uitschakelbare thyristor zoals de GRO (Gate Turn Off) of de IGCT (Integrated Gate Commutated Thyristor)

Toepassingsgebied

	Mosfet	IGBT	GTO/IGCT
Spanning	1000 <i>V</i>	6500 <i>V</i>	6000 <i>V</i>
Stroom	100 <i>A</i>	2400 <i>A</i>	4000 <i>A</i>
Schakel frequentie	10 – 1000 <i>kHz</i>	2 – 20 <i>kHz</i>	0.2 – 1 <i>kHz</i>

Tabel: Toepassingsgebied van de halfgeleiders

DC Tussenkring

nul-component

De nul-component u_0 is de gelijkspannings-component van de AC spanning.

Spanningsvectoren

$$v_{i} = T_{23} \begin{pmatrix} u_{ai} \\ u_{bi} \\ u_{ci} \end{pmatrix} = \frac{u_{dc}}{2} T_{23} \begin{pmatrix} s_{ai} \\ s_{bi} \\ s_{ci} \end{pmatrix}$$

Peter van Duijsen

(1)

Spanningsvectoren

$$\widetilde{v}_i = \frac{v_i}{u_{dc}/2} T_{23} \begin{pmatrix} s_{ai} \\ s_{bi} \\ s_{ci} \end{pmatrix}$$

(2)

Transformatie

$$T_{23} = \frac{2}{3} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$$

(3)

Schakeltoestanden

	s _a	s _b	s _c	$\widetilde{v_{i\alpha}}$	$\widetilde{v_{i\beta}}$
V ₀	-1	-1	-1	0	0
$ \widetilde{v_1} $	+1	-1	-1	+4/3	0
$ \widetilde{v_2} $	+1	+1	-1	+2/3	+2/sqrt3
V ₃	-1	+1	-1	-2/3	+2/sqrt3
v ₄	-1	+1	+1	-4/3	0
V ₅	-1	-1	+1	-2/3	-2/sqrt3
V ₆	+1	-1	+1	+2/3	-2/sqrt3
V7	+1	+1	+1	0	0

Tabel: Spanningsvectoren afhankelijk van de schakelaarstanden

Zeshoek

Figuur: Fundamentele vectoren in het orthogonale stelsel.

Enkelfase

$$\widetilde{u}^* = \frac{u^*}{u_{dc}/2} \tag{4}$$
$$s^* = \widetilde{u}^* \tag{5}$$

Pulsbreedte Modulatie

Carrier

Figuur: Implementatie van de Pulsbreedte modulator met behulp van de driehoek carrier en comperator.

Schakelaartoestanden zijn een representatie voor referentiespanning

$$\overline{s(t)} = \widetilde{u}^*(t) \tag{6}$$

Triangle modulation

Figuur: Modulatie carrier met een constante referentiespanning.

Referentie signaal

Figuur: Modulatie carrier met een constante referentiespanning.

Modulatieindex

De verhouding in amplitude van het referentie signaal tot de carrier, wordt ook wel de modulatie index m genoemd.

$$m = max \left| \frac{u^*(t)}{u_{dc}/2} \right| = |\widetilde{u}^*(t)|$$
(7)

3 fasen PWM

 Figuur: Drie-fasen implementatie van de Pulsbreedte modulator met behulp van

 de driehoek carrier en comperator.

 Peter van Duijsen
 Vermogenselektronica II

 20 mei 2020
 24 / 55

3 fasen PWM

Figuur: Pulsbreedte modulatie signaal met modulatie index m = 0.5.

Drie-fasen PWM

m=1

Figuur: Pulsbreedte modulatie signaal met modulatie index m = 1.

Maximale index

$$|\widetilde{u}_{a,b,c}(t)| \leq 1$$

Peter van Duijsen

(8)

Zeshoek voor PWM

Figuur: Spanningsvektoren met sinus-driehoek Pulsbreedtemodulatie.

Lengte m i=1

$$m=|\widetilde{u}|\leq m_{max}=1$$

(9)

nul component

Als eerste definiëren we de nul-component als functie van de referentiesignalen.

$$u_0(t) = \frac{1}{2} \left(\max\left[u_a^*(t), u_b^*(t), u_c^*(t) \right] + \min\left[u_a^*(t), u_b^*(t), u_c^*(t) \right] \right)$$
(10)

Deze nul-component gaan we vervolgens bij de referentiesignalen optellen.

$$u_a^{**}(t) = u_a^*(t) - u_0(t)$$
(11)

$$u_b^{**}(t) = u_b^*(t) - u_0(t)$$
(12)

$$u_c^{**}(t) = u_c^*(t) - u_0(t)$$
(13)

Zero Point Shift

Figuur: Drie-fasen implementatie van de Pulsbreedte modulator met behulp van de driehoek carrier, comperator en Zero-Point-Shift.

Bereik ZPS

Figuur: Spanningsvektoren met sinus-driehoek Pulsbreedtemodulatie en Zero-Point-Shift.

Zero Point Shift

m=1

Figuur: Pulsbreedte modulatie signaal met Zero-Point-Shift en met modulatie index m = 1.

Zero Point Shift

m=1.5

Figuur: Pulsbreedte modulatie signaal met Zero-Point-Shift en met modulatie index m = 1.15.

Space Vector Modulatie

Space Vector Modulation zeshoek

Figuur: Space Vector Modulatie met de basis vectoren.

SVM combinatie

Figuur: Space Vector Modulatie, u^* is een combinatie van v_0 , v_1 en v_2 .

Sampling interval

$$T_s = \frac{1}{F_s} \tag{14}$$

$$u^{*}(k) = \frac{1}{T_{s}} \int_{kT_{s}}^{(k+1)T_{s}} u(t) dt$$

$$= \frac{1}{T_{s}} (t_{0}v_{0} + t_{1}v_{1} + t_{2}v_{2} + t_{3}v_{3} + t_{4}v_{4} + t_{5}v_{5} + t_{6}v_{6} + t_{7}v_{7})$$
(16)
$$= \tau_{0}v_{0} + \tau_{1}v_{1} + \tau_{2}v_{2} + \tau_{3}v_{3} + \tau_{4}v_{4} + \tau_{5}v_{5} + \tau_{6}v_{6} + \tau_{7}v_{7}$$
(17)

....waarin:

$$\tau_i = \frac{t_i}{T_s} \sum_i \tau_i = 1 \tau_i \ge 0 \tag{18}$$

Spanningsvectoren

$$\tilde{u}^{*}(k) = \frac{u^{*}(k)}{u_{dc}/2}$$

$$\tilde{v}_{i} = \frac{v_{i}}{u_{dc}/2}$$
(19)
(20)

...zodat we de genormaliseerde spanning kunnen schrijven als:

$$\tilde{u}^{*}(k) = \frac{1}{T_{s}} \int_{kT_{s}}^{(k+1)T_{s}} \tilde{u}(t) dt$$

$$= \tau_{0} \tilde{v}_{0} + \tau_{1} \tilde{v}_{1} + \tau_{2} \tilde{v}_{2} + \tau_{3} \tilde{v}_{3} + \tau_{4} \tilde{v}_{4} + \tau_{5} \tilde{v}_{5} + \tau_{6} \tilde{v}_{6} + \tau_{7} \tilde{v}_{7}$$
(22)

SVM spanningsvector

Figuur: Space Vector Modulatie, u^* is afhankelijk van α en β .

Sektor 1

$$u^{*}(k) = \frac{1}{T_{s}} \int_{kT_{s}}^{(k+1)T_{s}} u(t) dt$$
(23)
= $\frac{1}{T_{s}} (t_{0}v_{0} + t_{1}v_{1} + t_{2}v_{2})$ (24)
= $\tau_{0}v_{0} + \tau_{1}v_{1} + \tau_{2}v_{2}$ (25)

Space Vector Modulatie

Tijden voor sektor 1

$$\tau_{1} = \frac{3}{4} \tilde{u}_{\alpha}^{*} - \frac{\sqrt{3}}{4} \tilde{u}_{\beta}^{*}$$
(26)
$$\tau_{2} = \frac{\sqrt{3}}{2} \tilde{u}_{\beta}^{*}$$
(27)

Space Vector Modulatie

want....

$$\tilde{u}^* = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \tau_1 \cdot \tilde{v}_1 + \tau_2 \cdot \tilde{v}_2$$
(28)
$$\tilde{v}_1 = \begin{pmatrix} \frac{4}{3} \\ 0 \end{pmatrix}$$
(29)
$$\tilde{v}_2 = \begin{pmatrix} \frac{1}{2} \cdot \frac{4}{3} \\ \frac{2}{\sqrt{3}} \end{pmatrix}$$
(30)

Invullen geeft:

$$\tilde{u}^* = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \tau_1 \cdot \begin{pmatrix} \frac{4}{3} \\ 0 \end{pmatrix} + \tau_2 \cdot \begin{pmatrix} \frac{1}{2} \cdot \frac{4}{3} \\ \frac{2}{\sqrt{3}} \end{pmatrix}$$
(31)

Hierin is als eerste τ_2 uit te rekenen:

Vectoren

Figuur: Space Vector Modulatie, iedere spanningsvector u^* binnen de cirkel is te realiseren.

Space Vector Modulatie

Lengte spanningsvektor

$$|\tilde{u}^*| \leq \frac{2}{\sqrt{3}}$$

Peter van Duijsen

(40)

Welke sektor

Sector	α	$\sqrt{3}\alpha + \beta$	$\sqrt{3}\alpha - \beta$
1	+	+	+
2	+	+	-
3	+	-	-
4	-	-	-
5	-	-	+
6	-	+	+

Tabel: Bepaling van de sector bij space vector modulatie

Tijden per sektor

Sector	τ_i	τ_{i+1}	Zero voltage vector
1	$\tau_1 = +\frac{3}{4}\alpha - \frac{\sqrt{3}}{4}\beta$	$\tau_2 = +\frac{\sqrt{3}}{2}\beta$	$\tau_0 + \tau_7 = 1 - \tau_1 - \tau_2$
2	$\tau_2 = +\frac{3}{4}\alpha + \frac{\sqrt{3}}{4}\beta$	$\tau_3 = -\frac{3}{4}\alpha + \frac{\sqrt{3}}{4}\beta$	$\tau_0 + \tau_7 = 1 - \tau_2 - \tau_3$
3	$\tau_4 = -\frac{3}{4}\alpha - \frac{\sqrt{3}}{4}\beta$	$\tau_3 = +\frac{\sqrt{3}}{2}\beta$	$\tau_0 + \tau_7 = 1 - \tau_3 - \tau_4$
4	$\tau_4 = -\frac{3}{4}\alpha + \frac{\sqrt{3}}{4}\beta$	$\tau_5 = -\frac{\sqrt{3}}{2}\beta$	$\tau_0 + \tau_7 = 1 - \tau_4 - \tau_5$
5	$\tau_6 = +\frac{3}{4}\alpha - \frac{\sqrt{3}}{4}\beta$	$\tau_5 = -\frac{3}{4}\alpha - \frac{\sqrt{3}}{4}\beta$	$\tau_0 + \tau_7 = 1 - \tau_6 - \tau_5$
6	$\tau_1 = +\frac{3}{4}\alpha + \frac{\sqrt{3}}{4}\beta$	$\tau_6 = -\frac{\sqrt{3}}{2}\beta$	$\tau_0 + \tau_7 = 1 - \tau_6 - \tau_1$

Tabel: Schaalfactoren voor de space vector modulatie

Opbouw spanningsvektor

Figuur: Space Vector Modulatie, $\binom{\alpha}{\beta} = \binom{0.4}{0.2}$. Van boven naar beneden in de scopes zijn de aan-tijden, de vector $\binom{\alpha}{\beta}$ en de drie modulatie indexen te zien.

Schakeltijden

Figuur: Space Vector Modulatie, $\binom{\alpha}{\beta} = \binom{-0.4}{0.2}$. Van boven naar beneden in de scopes zijn de aan-tijden, de vector $\binom{\alpha}{\beta}$ en de drie modulatie indexen te zien.

Sinusvormige modulatie

Figuur: Space Vector Modulatie.

Modulatie van de inverter

Figuur: Space Vector Modulatie voor de driefasen inverter.

Space Vector Modulatie

Figuur: Space Vector Modulatie voor een gehele periode.

Discontinue SVM

Figuur: Discontinue Space Vector Modulatie type 1, 2, 3 en 4.

Gefilterde spanning

Figuur: Gefilterde spanning verkregen met Space Vector Modulatie.

Maximale spanning

Peter van Duijsen

20 mei 2020 54 / 55

Space Vector Modulatie

SVM heet 15% meer spanningsbereik

Figuur: Groter spanningsbereik voor de space vector gemoduleerde spanning. Buitenste cirkel is de SVM gemoduleerde spanning, terwijl de spanning met PWM gemaakt een kleinere, ingedeukte cirkel maakt.