Transformer

Usc	15	U short circuit
Isc	45.55	I short circuit
Psc	300	Power during short circuit measurement
Uoc	3000	U open circuit
Ioc	0.2	I open circuit
Poc	200	Power during open circuit measurement
Usec	220	Secondary voltage, primary voltage equals Uoc
Calculate		

Short circuit test

Measured values are rms values, $\cos(\phi)$ or real power measured, recalculate $\cos(\phi)$ from $\cos(\phi)=P/(U^*I)$

Short circuit test parameter calculation of the copper losses. Secondary(transformed to primary) winding impedance and primary winding impedance. P[Watt] during short circuit = P=Usc*Isc*cos(ϕ)=300[Watt] cos(ϕ) during short circuit cos(ϕ) = P/Usc*Isc=300/(45.55*15=0.44

From P and I the winding copper loss resistance is calculated: $R_{CU}[ohm]=P/I^2=300/(46*46)=145[m\Omega]$

Apparent S[VA] during short circuit = S=Usc*Isc=15*45.55=683.25[VA] Q[VAR] during short circuit = Q=sqrt(S²-P²)=sqrt(683.25*683.25-300*300)=614[VAR]

From reactive power, the leakage winding inductance is calculated $X_{\sigma}=Q/I^2=614/(46*46)=0.296[\text{ohm}]$ $L_{\sigma}sec[H]=X_{\sigma}/(2 \pi f)=0/314.15927=0.942[\text{mH}]$

No load test

Measured values are rms values, $\cos(\phi)$ or real power measured, recalculate $\cos(\phi)$ from $\cos(\phi)=P/(U^*I)$

P[Watt] during open circuit = P=Usc*Isc*cos(ϕ)=200[Watt] cos(ϕ) during open circuit cos(ϕ) = P/Usc*Isc=200/(0.2*3000=0.33)

From P and U the iron loss resistance R_{FE} is calculated: R_{FE} sec[ohm]=U²/P=(3000*3000)/200)=45000[ohm]

Apparent S[VA] during open circuit = S=Uoc*Ioc=3000*0=600[VA]Q[VAR] during open circuit = $Q=sqrt(S^2-P^2)=sqrt(600*600-200*200)=566[VAR]$

From reactive power, the magnetizing winding inductance is calculated $X_m[ohm]=U^2/Q=(3000*3000)/566)=15910[ohm]$ $L_m[mH]=X_m/(2 \pi f)=15910/314.15927=50643[mH]$

Transformer ratio

Transformer ratio n = Uprimary/UsecondaryTransformer ratio n = 3000/220=14

Transformer Power size

S = 3000*46=136650[VA]

Short circuit voltage in percent

 $U_k = Usc/UNominal$ at primary side uk[%] = 15/3000=1[%]

Real primary and secondary winding resistance

Measured and calculated copper loss resistance $R_{CU} = 144.6[m\Omega]$ Primary + transformed secondary resistance = $R_{CU} = 144.6[m\Omega]$ Rcu=Rprimary+n²Rsecondary Rcu=145=Rprimary+14²Rsecondary[m Ω] Real primary winding resistance Rprimary = 1[m Ω] Real secondary winding resistance Rsecondary = 1[m Ω] Transformed secondary winding resistance R`secondary = 143.8[m Ω]

Copper loss at nominal load

Nominal input current Isc = 46[A]Nominal output current n*Isc = 621[A]Nominal primary winding loss = Isc²*Rp = 2[Watt] Nominal secondary winding loss = (Isc/n)²*Rs = 298[Watt]